Smoothness of the Convex Hull of Planar Brownian Motion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature of the Convex Hull of Planar Brownian Motion near Its Minimum Point

Let f be a (random) real-valued function whose graph represents the boundary of the convex hull of planar Brownian motion run until time 1 near its lowest point in a coordinate system so that f is non-negative and f(0) = 0. The ratio of f(x) and |x|/ | log |x|| oscillates near 0 between 0 and infinity a.s. 1. Main results. Let X = (X1, X2) be a 2-dimensional Brownian motion and let C denote the...

متن کامل

Dynamic Planar Convex Hull

In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(logn) time per operation. The space usage of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangen...

متن کامل

Convex hull of planar h-polyhedra

Suppose 〈Ai,~ci〉 are planar (convex) H-polyhedra, that is, Ai ∈ Rni×2 and ~ci ∈ Ri . Let Pi = {~x ∈ R | Ai~x ≤ ~ci} and n = n1 + n2. We present an O(n log n) algorithm for calculating an H-polyhedron 〈A,~c〉 with the smallest P = {~x ∈ R | A~x ≤ ~c} such that P1 ∪ P2 ⊆ P .

متن کامل

The Ultimate Planar Convex Hull Algorithm?

We present a new planar convex hull algorithm with worst case time complexity O(n log H) where n is the size of the input set and H is the size of the output set, i.e. the number of vertices found to be on the hull. We also show that this algorithm is asymptotically worst case optimal on a rather realistic model of computation even if the complexity of the problem is measured in terms of input ...

متن کامل

Volumetric properties of the convex hull of an n - dimensional Brownian motion ∗

Let K be the convex hull of the path of a standard Brownian motion B(t) inR, taken at time 0 ≤ t ≤ 1. We derive formulas for the expected volume and surface area of K. Moreover, we show that in order to approximate K by a discrete version of K, namely by the convex hull of a random walk attained by taking B(tn) at discrete (random) times, the number of steps that one should take in order for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1989

ISSN: 0091-1798

DOI: 10.1214/aop/1176991500